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Landau theory is used to investigate the behavior of a metallic magnet driven toward a quantum
critical point by the application of pressure. The observed dependence of the transition temperature
with pressure is used to show that the coupling of the magnetic order to the lattice diverges as the
quantum critical point is approached. This means that a first order transition will occur in magnets
�both ferromagnets and antiferromagnets� because of the coupling to the lattice. The Landau
equations are solved numerically without further approximations. There are other mechanisms that
can cause a first order transition so the significance of this work is that it will enable us to determine
the extent to which any particular first order transition is driven by coupling to the lattice or if other
causes are responsible. © 2010 American Institute of Physics. �doi:10.1063/1.3366612�

I. INTRODUCTION

A quantum critical point �QCP� is approached by apply-
ing pressure in a number of conducting ferromagnetic and
antiferromagnetic metals.1–3 This involves a transition from a
magnetic metal to a phase that is a strongly correlated Fermi
liquid. In some cases, a superconducting phase appears as the
QCP is approached, however, in a number of materials, a
first order transition occurs just before the QCP is reached.4

The observed dependence of Tc on pressure necessarily
means that the magnetic energy is coupled to the lattice. A
first order phase transition occurs if this coupling exceeds a
critical value. This is inevitable if the pressure derivative of
Tc diverges at the QCP as occurs for metallic materials5 for
which a power law dependence is found for the dependence
of the transition temperature on pressure Tc�p�=T0�1
− �p / p0���, where ��1. There are good theoretical argu-
ments for expecting that �=3 /4 �Ref. 6� so we shall use this
value in what follows. The temperature and magnetic field
behavior of many of the weak metallic magnets e.g., ZrZn2

are described very well by Landau theory over a wide pa-
rameter range so it is useful to use this approach to get the
whole phase diagram.

The physics of the problem is understood from the fact
the magnetostriction will expand the lattice in the ordered
phase when the transition temperature falls when the mate-
rial is compressed. This leads naturally to a first order phase
transition because we can reach a pressure where the transi-
tion temperature in the paramagnetic phase is above the am-
bient temperature but because of magnetostriction the strain
in the ordered phase is reduced so the transition temperature
drops sufficiently so that the ordered phase is stable. Thus
there is a mixed phase region consisting of nonmagnetic and
magnetic regions. The magnetization is also enhanced in the
second order regime because the magnetic energy is en-
hanced below the ordering temperature due to the magneto-
striction.

Both the magnetization and hence the magnetostriction
vanish at the critical temperature of a second order transition
and so the transition temperature may be defined in terms of
the strain, Tc���=T0�1− �� /�0��3/4, where �0= p0 /K and K is
the elastic modulus. This is the expression used to write the
strain in the material in terms of the strain due to the applied
pressure which is present in the paramagnetic phase, �s

= p /K and the additional strain due to magnetostriction. This
generates a coupling between the square of the order param-
eter and the magnetostrictive strain.

II. LINEAR THEORY

The Landau free energy of a magnetic material, includ-
ing the hydrostatic pressure, for which the transition tem-
perature, Tc is a function of the strain �, is written as follows:
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A
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In the paramagnetic phase, the equilibrium value of the strain
is given by �s= p /K. In the linearized theory, Tc is expanded
about �s to first order, Tc���=Tc��s�+ ���Tc���� / ����� ��=�s

��
−�s�.

The free energy is minimized with respect to ��−�s� and
this produces a renormalization of the fourth order coeffi-
cient,
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KB
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The tricritical point occurs where B� goes to zero. The en-
hancement of the magnetization in the ordered phase, men-
tioned earlier occurs because of the reduced value of B. The
magnetization is evaluated as a function of temperature for
the second order and tricritical regimes in this model in order
to compare it with the self-consistent theory described below.
Although this theory does give a first order region the valuea�Electronic mail: g.gehring@sheffield.ac.uk.
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of the magnetization in the ordered phase is unreasonably
high.

III. SELF-CONSISTENT THEORY

In the case that the reduction in the transition tempera-
ture follows a power law as a function of strain or pressure as
is seen in metallic materials, a more complete theory can be
used.5 The minimum of the free energy �1� is given by the
solution of the two equations,

�F�M,�;p,T�
�M

= 0 = M�A�T − Tc���� + BM2 + O�M4�� ,

�3�

�F�M,�;p,T�
��

= 0 = −
A

2

�Tc���
��

M2 + K� − p , �4�

the solutions are:M = 0 or M2 =
A�Tc��� − T�

B
, �5�

� =
p

K
+

A2

2BK
�Tc��� − T�

�Tc

��
. �6�

We solve these equations numerically using Tc���=T0�1
−� /�0�3/4. In the nonmagnetic phase, the strain takes the
temperature independent value, �=�s= p /K. The parameters
were chosen such that the tricritical point occurs for �s /�0

=0.9. In Fig. 1 we show the dependence of the strain with the
magnetization as calculated from Eq. �3�. The magnetization
is divided by a normalization factor, M0

2= �AT0� /B, which is
the value of the saturation magnetization when Tc is indepen-
dent of strain. When M =0 the strain takes the value �=�s but
for finite magnetization the strain is always below this value
in some cases by a very significant amount. The curves are
only drawn for the range of magnetization that actually oc-
curs for that value of the applied strain. Since the transition
temperature depends on the strain, we can combine the re-
sults shown in Fig. 1 to calculate the dependence of the
transition temperature on the magnetization and this is plot-

ted in Fig. 2. This shows the expected effect that Tc increases
with the magnetization; but we see from Eq. �3� that an in-
crease in Tc leads in turn to an increase in the magnetization.
It is this positive feedback that leads to a first order transi-
tion. Near to the QCP the transition temperature is a very
sensitive function of the strain and so the linear theory is
valid only when the magnetization is very small and hence
this theory is valid over a very narrow temperature range.

This is shown in Fig. 3 which shows the temperature
dependence of the strain obtained from the self-consistent
solution of Eq. �4�. There are three different types of curves
shown; in all cases ���s because ��Tc���� / �����0. For
�s /�0�0.9, in the second order region, the curve of � /�0

approaches the value of �s /�0 smoothly. At the tricritical
point, the curve of � /�0 approaches �s /�0 with a vertical
slope, this arises because of the tricritical exponents. For
higher pressure, in the first order region, the curves are dis-
continuous, what is shown here is the point where the or-
dered phase becomes unstable—there is another, lower, tem-
perature where the paramagnetic phase is unstable and there
is a mixed phase between these points.5 The pressure depen-
dence of the transition temperature is clear from the tempera-
tures at which the curves terminate for different values of �s.
Since Tc��� is a strong function of � the reduction of � in the
ordered phase acts to increase Tc which in turn increases M
as is seen from Eq. �3�. The magnetization is given by plots
shown in Figs. 4 for the second order and tricritical regimes.

FIG. 1. �Color online� The change in the strain with magnetization. The
QCP occurs for the strain �0 and the strain in the absence of magnetization
is �s and the magnetization is normalized by M0

2= �AT0� /B.

FIG. 2. �Color online� The change in the transition temperature with mag-
netization caused by the change in the strain.

FIG. 3. �Color online� The strain in the magnetic phase from Eq. �4�, the
self-consistent theory, the tricritical point occurs for �s /�0=0.9.
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These plots include the result from the linear theory
where the effects of the dependence of the transition tem-
perature on strain are approximated by a term that is linear in
��−�s�, which has the effect of changing the Landau param-
eter from B to B� is shown as is the result labeled linear
theory, for completeness we show the plot where Tc has been
reduced but the value of B is unchanged. The magnetization
is shown for various pressures in Fig. 5.

In these figures, the temperature is defined in units of the
transition temperature of the unstrained material. Close to a
QCP, at �o, the rapid dependence of the strain on the mag-
netization means that the linearized theory is only a good
approximation very close to the phase transition in the sec-
ond order regime

IV. CONCLUSIONS

We have shown that the linear theory, which is defined to
be valid just near the transition, gives results that deviate
substantially from the self-consistent calculation at low tem-
peratures in the second order regime and in the first order
regime. We have shown that the effects of the coupling to the
lattice are strongest in the region of the transition but then
are reduced at lower temperatures because the magnetostric-
tive strain takes the system away from quantum criticality.
The results at low temperatures are in strong contrast to those
obtained from those obtained from a perturbation theory in
which the Landau parameter B is reduced as this gives a
much larger value of the magnetization at low temperatures
as was seen in Figs. 2�a� and 2�b�. This difference would also
apply to any other mechanism for obtaining a QCP which
resulted in an enhanced, but constant, value of B.
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FIG. 4. �Color online� The magnetization as a function of temperature in �a�
the second order region and �b� at the tricritical pressure; a comparison of
the linear and self-consistent theory.

FIG. 5. �Color online� The magnetization as a function of temperature for
different pressures.
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